package main import ( "errors" "math" "strconv" "strings" ) type Position struct { Latitude float64 `json:"stop_lat"` Longitude float64 `json:"stop_lon"` } func PositionFromString(data string) (Position, error) { var err error var position Position split := strings.Split(data, ",") if len(split) != 2 { return position, errors.New("incorrect format") } if position.Latitude, err = strconv.ParseFloat(split[0], 64); err != nil { return position, err } if position.Longitude, err = strconv.ParseFloat(split[1], 64); err != nil { return position, err } return position, nil } // haversin(θ) function func hsin(theta float64) float64 { return math.Pow(math.Sin(theta/2), 2) } // Distance function returns the distance (in meters) between two points of // a given longitude and latitude relatively accurately (using a spherical // approximation of the Earth) through the Haversin Distance Formula for // great arc distance on a sphere with accuracy for small distances // // point coordinates are supplied in degrees and converted into rad. in the func // // distance returned is METERS!!!!!! // http://en.wikipedia.org/wiki/Haversine_formula func Distance(a Position, b Position) float64 { // convert to radians // must cast radius as float to multiply later var la1, lo1, la2, lo2, r float64 la1 = a.Latitude * math.Pi / 180 lo1 = a.Longitude * math.Pi / 180 la2 = b.Latitude * math.Pi / 180 lo2 = b.Longitude * math.Pi / 180 r = 6378100 // Earth radius in METERS // calculate h := hsin(la2-la1) + math.Cos(la1)*math.Cos(la2)*hsin(lo2-lo1) return 2 * r * math.Asin(math.Sqrt(h)) }